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Abstract 
This study proposes a novel network growth model named ComAwareNetGrowth which aims to mimic evolution of real-
world social networks. The model works in discrete time. At each timestep, a new link (I) within-community or (II) anywhere 
in the network is created (a) between existing nodes or (b) between an existing node and a newcoming node, based on (i) 
random graph model, (ii) preferential attachment model, (iii) a triangle- closing model, or (iv) a quadrangle-closing model. 
Parameters control the probability of employing a particular mechanism in link creation. Experimental results on Karate and 
Caltech social networks shows that the model is able to mimic real-word social networks in terms of clustering coefficient, 
modularity, average path length, diameter, and power law exponent. Further experiments indicate that 
ComAwareNetGrowth model is able to generate variety of synthetic networks with different statistics.  
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Abstract 

This study proposes a novel network growth model which aims to mimic evolution of real-
world social networks. The model works in discrete time. At each timestep,  a new  link (I) 
within-community or (II) anywhere in the network is created (a) between existing nodes or 
(b) between an existing node and a newcoming  node,  based  on  (i) random graph model, 
(ii) preferential attachment model, (iii) a triangle-closing model, or (iv) a quadrangle-closing 
model. Parameters control the probability of employing a particular mechanism in link 
creation. Experimental results on Karate and Caltech social networks shows that the model 
is able to mimic real-word social networks in terms of clustering coefficient, modularity, 
average path length, diameter, and fitted alpha value of power-law distribution of degrees. 
Further experiments indicate that the model is able to generate variety of synthetic networks 
with different statistics. 
Keywords networks and graphs; network growth models; graph generators; communities. 

 

Introduction 
Purpose of this study is to build a network growth model that is able to generate synthetic 
networks which resemble real-world social networks. Existing network growth models in 
the literature often aim to reproduce only a very small set of network statistics. Our work, on 
the other hand, attempts to reproduce a larger list of various statistics to evaluate the proposed 
model’s accuracy. 
The contribution of this study includes using combination of different growth mechanisms 
under a community-aware framework, providing a growth model to understand evolution of 
many social networks, and providing a generative mechanism which can be used in 
generating synthetic networks. 
The rest of this study is structured as follows. In Section 2,  the relevant  literature is  briefly 
reviewed. In Section 3, the proposed model is formally described. In section 4, experimental 
results and findings are presented. The conclusion and final remarks are  given in Section 5. 
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Background 
Generally speaking, random graph models assume that the probability of links (edges) 
between nodes (vertices) are independent of each other and equal. There are closely 
related versions of random graph models. For instance, in original Erdos-Renyi model 
(Erdos & Renyi, 1959), all graphs on a fixed node set with a fixed number of links are 
equally likely. On the other hand, in the model introduced by Gilbert (1959), each link 
has a fixed probability of being present or absent, independently of the other links. 
Random graph models and many other popular models in the literature are originally 
static models which enable the study of structural features of networks. Another category 
of network models is growth models (also called as generative network models). Prefer- 
ential attachment model is an example of a model in the latter category. (Simon, 1955), 
(Price, 1976), (Barabasi & Albert, 1999) are the seminal papers on preferential attach- 
ment model. The main idea behind this model is as follows. At each time, a new node 
arrives and makes a certain number of links with existing nodes using the node degrees as 
probability of making a link with the node. This mechanism is able to generate a degree 
distribution which follows a power law which is observed in most real-world networks. 
Triadic closure is a concept in social network theory, first suggested by German sociologist 
Simmel (1908). It follows the idea that two nodes are more likely to be connected if they 
have common neighbors. Generalizing this, we can consider n-th order neighbors instead  of 
only first-order neighbors. In this way, for instance, a quadrangle-closure implies that two 
nodes are more likely to be connected if they have neighbors who are neighbors with each 
other. Once a quadrangle is closed, a four-cycle is created. Lazega and Pattison  (1999) 
examine whether cycles larger than tri-cycles could be observed in an empirical setting to a 
greater extent than could be accounted for by parameters for configurations involving at most 
three nodes. Snijders et al. (2006) describes this as four-cycle partial conditional dependence 
and proposes it as a new configuration. 
Kimura et al. (2004) present a model where links are created by a mixture of preferential 
attachment, uniform attachment, and community-based  attachment  model.  Leskovec  et al. 
(2008) propose a network evolution model considering the micromechanisms in social 
networks. Their model utilizes preferential attachment and triangle-closure models in 
creating links. Lim et al. (2016) provide a comprehensive review of different approaches  in 
generating realistic synthetic graphs. 

 

Proposed Model 
The proposed model works in discrete time steps. It assumes that each node belongs to 
exactly one community. At each time step, a new link is to be created. Nodes are assumed 
to arrive in uniform time intervals. The time interval is found by dividing number of links 
(m) to number of nodes (n), thus a new node arrives at each m/n-th step. 
When a new node arrives, it is assigned a community label with respective probabilities 
given as input. Then, the arriving node makes a link either within its community or in the 
whole network based on respective probabilities specified by the input parameter. The 
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link can be made with a uniformly selected random node or with a node selected by using 
node degrees as the proxy probabilities (i.e., preferential attachment). If the link is to be 
made within community, node degrees for preferential attachment process is calculated only 
considering the links in the community. 
At the time steps where no new node arrives, a new link is created between the existing 
nodes.   One end of the link is selected randomly among all existing nodes.   The other   end 
is selected within community/in whole network, randomly or based on preferential 
attachment model; similar to the procedure explained previously for a newly arriving  node. 
However, another mechanism is available for links between  existing nodes that is  not 
available for newly arriving nodes: triangle or quadrangle closing models. For a given node, 
a triangle is closed by  making a link to its second-order neighbor.  A quadrangle      is closed 
by making a link to its third-order neighbor. More mechanisms can be created based on the 
proposed n-th order specification but considering that diameter and average path length of 
observed networks are relatively small, including such mechanisms with higher n value 
would mean making a link specifically to a distant node rather than a node in the 
neighborhood. 
The selection of mechanisms (e.g., within community/in whole network, random/preferential 
attachment/triangle-closure/quadrangle-closure) are controlled by input parameters. In 
some cases, the selected mechanism is not able to generate a new link for reasons such as 
lack of possible triangles or quadrangles, or because all possible links for the given node 
and mechanism already exist in the network.  In those cases, at that time step, no action 
is performed and model continues with the next time step. Although the property of 
uniform arrival of nodes is distorted, the resulting network still has n nodes and m links. 
In addition, potential target nodes are selected before checking whether they already have a 
link with the source node. If a selected node is already connected, no action is performed at 
that time step too. This also results in violation of uniform arrival of nodes.  However, we 
chose to keep it this way to prevent overdensification of relatively small communities where 
a randomly selected node is more likely to be an immediate neighbor. 
Each mechanism employed in our model corresponds to the simplified versions of possible 
link formations in real-world networks. The stronger the communities,  the more proba-  ble 
for a node to make connection within its community. Random links are usually less frequent 
in most social networks but actually an existing mechanism. Preferential attach- ment reflects 
the ’rich get richer’ phenomena. Triangle closures and quadrangle closures are justified by 
the observation that nodes are usually more likely to make links within  their neighborhood 
rather than distant nodes. 
Algorithm 1 presents our proposed model in general with omitting some details. The 
complete source code in R software language is available upon request. 
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Algorithm 1 The Proposed Community-aware Network Growth Model 
Input: number of nodes n and links m; number of communities k and probability vector  of 

belonging to communities C; probability of making a link within community comp; 
newcoming nodes’ probability of making a random link rpn, of making a link based   on 
preferential attachment ppn; existing nodes’ probability of making a random link rpe, of 
making a link based on preferential attachment ppe, of closing a triangle c3pe,  of closing 
a quadrangle c4pe 

1:  tt(V, E) ← an empty graph 
2: nodeArrivalF requency ← m/n 
3: while |E| < m do 
4: if currentT imeStep is multiple of nodeArrivalF requency then 
5: tt ← tt + i {i is the newly added node} 
6: assign i to a community based on C 
7: switch (f (comp, rpn, ppn)) 
8: case 1: create a random link from i 
9: case 2: create a link from i with preferential attachment 

10: case 3: create a random link from i, within its community 
11: case 4: create a link from i with preferential attachment, within its community 
12: end switch 
13: else 
14: randomly select an existing node i 
15: switch (f (comp, rpe, ppe, c3pe, c4pe)) 
16: case 1: create a random link from i, 
17: case 2: create a link from i with preferential attachment 
18: case 3: create a link between i and one of its 2nd-order neighbor 
19: case 4: create a link between i and one of its 3rd-order neighbor 20:
 case 5: create a random link from i, within its community 
21: case 6: create a link from i with preferential attachment, within its community  22:
 case 7: create a link btw i and one of its 2nd-order neighbor, within its community 
23: case 8: create a link btw i and one of its 3rd-order neighbor, within its community 
24: end switch 
25: end if 
26: end while 
Output: undirected, unweighted, simple graph tt(V, E) 

 

Experimental Analysis 
In this section, several experiments are conducted and results are analyzed. In the first  part, 
we attempt to generate two real-world undirected simple social networks: Zachary’s Karate 
Club (Zachary, 1977) and Caltech Facebook Network (Traud et al.,  2011).  The  first 
network, called as Karate in the rest of the study, is a well-known social network of a 
university karate club where links exist between members who interact outside the club. 
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The latter network, called as Caltech in the rest of the study,  consists of the complete set  of 
users from the Facebook network of California Institute of Technology. 
Table 1 displays various statistics of the two  networks.  The statistics are calculated us-  ing 
R’s igraph package. In calculation of modularity; first, communities are detected by utilizing 
fast greedy community detection algorithm available in R. Estimated communi- ties, then, 
are used in calculation of modularity. The sizes of the found communities are also utilized 
as input probabilities for belonging to communities in the network growth experiments. 

 
INSERT TABLE 1 HERE 

 
Experiments on Karate Network 
The following parameter values are used to generate a social network that mimics Karate 
network: n = 34, m = 78, k = 3, C = {0.24, 0.5, 0.26}, comp = 0.8, rpn = 0.22, 
ppn = 0.78, rpe = 0.04, ppe = 0.14, c3pe = 0.41, and c4pe = 0.41. The experiments are repeated 
10 times, and statistics for the generated and observed networks are given in  Table 2. 
On average, the proposed growth model with the given parameter settings is able to mimic 
the Karate network in general. However, the desired modularity value is not obtained. 
Although most of the statistics can be generated with a small standard deviation, modu- larity 
has a relatively large variation in the experiments. This might be due to very small size of 
the network. 

 
INSERT TABLE 2 HERE 

 
Figure 1 visualizes the communities found in the original Karate network and a synthetic 
network generated by our model. In the synthetic network, communities are less separated 
than the original network. Especially, two communities (displayed in white and black) do 
not come as separate communities. Note that, this is just one of the generated networks. Other 
networks might more closely resemble the original network. 

 
INSERT FIGURE 1 HERE 

 
Experiments on Caltech Network 
The following parameter values are used to generate a network that mimics Caltech net- 
work: n = 769, m = 16656, k = 8, C = {0.375, 0.341, 0.254, 0.017, 0.005, 0.004, 0.003, 0.003}, 
comp = 0.85, rpn = 0.333, ppn = 0.666,  rpe =  0.091,  ppe =  0.182,  c3pe =  0.363,  and c4pe 
= 0.363. The experiments are repeated 10 times and network statistics for the generated and 
observed networks and are given in Table 3. 
Experimental results show that modularity and power law alpha statistics are matched 
almost exactly with a negligible standard deviation. However, clustering coefficient and 
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diameter are not replicated successfully in terms of difference between the generated statis- 
tic and observed statistic. Caltech network is a larger network than the Karate network. 
Therefore, as desired, variances in the generated statistics are almost zero. Accordingly, it 
can be concluded that given a sufficient number of nodes and links, our proposed growth 
model is able to produce stable results. 

 
INSERT TABLE 3 HERE 

 
Other Experiments 
Another set of experiments are performed without the purpose of mimicking any real 
network but to explore the variety of networks which can be generated with our proposed 
growth model.  Parameter settings for eight experiments are presented in Table  4.  The  first 
and last four experiments are the same except that m = 2000 for former experiments whereas 
m = 5000 for latter experiments, hence a denser network. Each experiment is repeated for 10 
times.  Mean and standard deviations of generated statistics is presented    in Table 5. 

 
INSERT TABLE 4 HERE 

INSERT TABLE 5 HERE 

The experiments confirm that standard deviations are indeed very low.  Diameter might   be 
seen as an exception to this but it is mostly due to the nature of that statistic.  Since       it is 
an integer value, even if the model generates only two adjacent integer values for this statistic, 
standard deviation might come as large at the first sight. 
As the number of links increase from 2000 to 5000, values for Average Path Length, 
Diameter gets smaller as expected. On the other hand, Clustering Coefficent increases. There 
does not seem to be a significant change in value of Modularity. 

 

Conclusion 
In this work, we have developed a network growth model with the aim of exploring the 
mechanisms behind most real-world networks, and being able to mimic real-world network 
through these mechanisms.  The proposed growth model serves as an initial step to build  an 
realistic growth model which can generate graphs with any set of given statistics. 
When there exist a sufficient number of nodes and links, our model generates networks 
which do not vary between themselves in terms of the network statistics employed in this 
study. Such stability is highly desired. However, some network statistics are not being 
successfully replicated.  This might be because one or combination of the two  things.  First, 
parameter values are determined based on a few manual experiments rather than estimating 
them from the real network. Second, the mechanisms employed in the growth model might 
not be sufficient to generate any social network easily, which suggest further development 
of the model. 
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Given the limitations of the current work, more effort in future should be directed towards 
developing more accurate mechanisms, exploring relationships between the mechanisms, 
and estimating parameter values via more systematic calibration experiments. 
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Figures and Tables 

 
 

 

Figure 1: (a) Observed Network, (b) Generated Network 
 
 

Table 1:  Network Statistics 
 

 n m Clustering 
Coefficient 

Avg. Path 
Length Modularity Diameter Power Law 

Alpha 
Karate 34 78 0.26 2.41 0.38 5.00 1.97 
Caltech 769 16656 0.29 2.34 0.33 6.00 2.00 
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Table  2:  Experimental Results for Karate Network 
 

 Clustering 
Coefficient 

Avg. 
Path Length Modularity Diameter Power Law 

Alpha 
run1 0.25 2.49 0.09 6.00 1.97 
run2 0.23 2.33 0.21 5.00 1.97 
run3 0.25 2.50 0.37 5.00 1.97 
run4 0.21 2.39 0.27 5.00 1.97 
run5 0.25 2.52 0.25 6.00 1.97 
run6 0.25 2.41 0.22 5.00 1.97 
run7 0.19 2.39 0.18 5.00 1.97 
run8 0.32 2.58 0.29 6.00 1.97 
run9 0.29 2.47 0.23 5.00 1.97 
run10 0.25 2.26 0.31 5.00 1.97 
Mean 0.25 2.43 0.24 5.30 1.97 
StdDev 0.04 0.09 0.08 0.48 0.00 
Observed 0.26 2.41 0.38 5.00 1.97 
Diff. -0.01 0.02 -0.14 0.30 0.00 

 
 
 
 
 

Table 3:  Experimental Results for Caltech Network 
 

 Clustering 
Coefficient 

Avg. Path 
Length Modularity Diameter Power Law 

Alpha 
run#1 0.17 2.20 0.32 4.00 2.00 
run#2 0.17 2.20 0.32 4.00 2.00 
run#3 0.17 2.20 0.33 4.00 2.00 
run#4 0.17 2.19 0.33 4.00 2.00 
run#5 0.17 2.20 0.32 4.00 2.00 
run#6 0.17 2.19 0.33 4.00 2.00 
run#7 0.17 2.20 0.33 4.00 2.00 
run#8 0.17 2.19 0.33 4.00 2.00 
run#9 0.17 2.20 0.33 4.00 2.00 
run#10 0.17 2.20 0.33 4.00 2.00 
Mean 0.17 2.20 0.33 4.00 2.00 
StdDev 0.00 0.00 0.00 0.00 0.00 
Observed 0.29 2.34 0.33 6.00 2.00 
Diff. -0.12 -0.14 0.00 -2.00 0.00 
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Table 4: Settings for Other Experiments 
 

 n m k C comp rpn ppn rpe ppe c3pe c4pe 
Exp#1 500 2000 5 {0.2, 0.2, 0.2, 0.2, 0.2} 0.50 0.50 0.5 0.25 0.25 0.25 0.25 
Exp#2 500 2000 5 {0.2, 0.2, 0.2, 0.2, 0.2} 0.75 0.33 0.66 0.10 0.20 0.30 0.40 
Exp#3 500 2000 5 {0.005, 0.055, 0.11, 0.28, 0.55} 0.75 0.33 0.66 0.10 0.20 0.30 0.40 
Exp#4 500 2000 5 {0.005, 0.055, 0.11, 0.28, 0.55} 0.25 0.17 0.83 0.12 0.63 0.12 0.12 
Exp#5 500 5000 5 {0.2, 0.2, 0.2, 0.2, 0.2} 0.50 0.50 0.50 0.25 0.25 0.25 0.25 
Exp#6 500 5000 5 {0.2, 0.2, 0.2, 0.2, 0.2} 0.75 0.33 0.66 0.10 0.20 0.30 0.40 
Exp#7 500 5000 5 {0.005, 0.055, 0.11, 0.28, 0.55} 0.75 0.33 0.66 0.10 0.20 0.30 0.40 
Exp#8 500 5000 5 {0.005, 0.055, 0.11, 0.28, 0.55} 0.25 0.17 0.83 0.12 0.63 0.12 0.12 

 
 
 
 
 
 
 

Table 5: Other Experimental Results 
 

 Clustering 
Coefficient 

Avg. Path 
Length Modularity Diameter Power Law 

Alpha 
Experiment#1 Mean 0.10 3.31 0.38 7.40 1.71 

Std.Dev. 0.00 0.02 0.01 0.52 0.01 
Experiment#2 Mean 0.11 3.33 0.47 7.30 1.71 

Std.Dev. 0.00 0.03 0.01 0.48 0.01 
Experiment#3 Mean 0.10 3.29 0.33 7.40 1.75 

Std.Dev. 0.01 0.02 0.02 0.70 0.02 
Experiment#4 Mean 0.11 3.41 0.43 7.50 1.43 

Std.Dev. 0.00 0.03 0.01 0.53 0.08 
Experiment#5 Mean 0.15 2.51 0.36 5.10 2.00 

Std.Dev. 0.00 0.00 0.01 0.32 0.00 
Experiment#6 Mean 0.16 2.52 0.44 4.90 2.00 

Std.Dev. 0.00 0.01 0.01 0.57 0.00 
Experiment#7 Mean 0.16 2.51 0.32 5.00 2.00 

Std.Dev. 0.01 0.01 0.01 0.47 0.00 
Experiment#8 Mean 0.17 2.55 0.40 5.10 2.00 

Std.Dev. 0.01 0.01 0.01 0.32 0.00 
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