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Abstract 
Renewable energy sources have been become important in the whole world along with the rapid depletion of energy 
resources. Potential of the wind energy, one of the most important renewable energy sources, in any region can be estimated 
using the statistical methods. For modelling, various distributions were used the wind speed data in the related modelling 
literature. Moreover, in the literature, fitting these distributions was performed via static data. Distributions must be 
dynamically adapted as the wind speed changes over time. The Real- Time Modelling (RTM) tool is proposed to determine 
the most appropriate distribution of real-time wind speed in this study. The developed RTM tool for modelling real-time wind 
speed model can determine the best distribution according to some evaluation criteria. This study show that the developed 
RTM tool work effectively and efficiently in the real-time wind speed data.  
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Abstract 

Renewable energy sources have been become important in the whole world along with the 

rapid depletion of energy resources. Potential of the wind energy, one of the most important 

renewable energy sources, in any region can be estimated using the statistical methods.  For 

modelling, various distributions were used the wind speed data in the related modelling 

literature. Moreover, in the literature, fitting these distributions was performed via static data.  

Distributions must be dynamically adapted as the wind speed changes over time. The Real-

Time Modelling (RTM) tool is proposed to determine the most appropriate distribution of 

real-time wind speed in this study. The developed RTM tool for modelling real-time wind 

speed model can determine the best distribution according to some evaluation criteria. This 

study show that the developed RTM tool work effectively and efficiently in the real-time 

wind speed data. 
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Introduction 

Renewable energy sources should be used more often to leave a more livable world wealth 

for future generations. It also makes renewable energy very significant because of the need 

for increased energy and the demolition of energy resources. The most popular renewable 

energy source is wind energy because it is clean, inexhaustible and low cost. The wind speed 

is the most important parameter to be used when evaluating the potential of a region (Ren et 

al., 2014).  It is necessary to use wind energy effectively and efficiently to select the best 

suitable region of the wind power plant as well as to make forecasts for the future. Therefore, 

it is very important to select the appropriate distribution and estimate the distribution to 

model the wind speed data.  

Weibull seems to be the most popular distribution for modeling the real-time data in the 

literature. However, in addition, Morgan et al. (2011) other well-known statistical 

distributions such as Log-normal, Gamma, Kappa and Wakaby have modeled offshore wind 

speeds. Lee et al. (2012) suggested using the Gumbell distribution for modelling the wind 

data. Soukissian (2013) investigated the modeling performance of the Johnson SB 

distribution for such data. Alavi et al. (2016a) considered the Gamma, Rayleigh, Lognormal 

and Weibull distributions for modelling such speed data belonging to five different regions in 



Iran. Shin et al. (2016) showed that the optimal distribution for such modelling in UAE is a 

Weibull-Extreme value type-distribution. Some distributions such as Log-normal, Gamma, 

Exponential, Inverse Gauss (Zhou et al., 2010), Mixtures Distributions (Akpinar and 

Akpinar, 2009; Akdağ et al., 2010; Shin et al., 2016), and some flexible distributions based 

on MaxEnt and MinxEnt principles (Ramírez and Carta, 2006; Kantar and Usta, 2008) were 

also applied to common literature. For more detailed information, Carta et al. (2009) is 

recommended. 

In this study, the distributions commonly used in the wind energy literature is used by 

comparing different model selection criteria on instant real wind speed data provided from 

Istanbul University Observatory. 

The remainder of this paper is organized as follows. Widely-used wind speed distributions 

and a common information about the wind speed data are provided in Section 2.  Description 

of some estimation methods and the model evaluation criteria are briefly provided in section 

3. Then, in Section 4, the analysis results and a discussion are presented. The study is 

concluded in Section 5. 

Distributions for Wind Speed and Data 

Average wind power density estimation can calculated using Eq (1) 

𝑃" = (1/2)𝜌𝐴𝜇, (1) 

where PD is a distributional model, A is the wind turbine blade sweep area (m2), ρ is air 

density (kg/m3) and μ3 is the third moment of related distribution (Safari and Gasore, 2010; 

Alavi et al., 2016b). 

Let X be a random variable from Birnbaum-Saunders distribution with the shape parameter 

𝛾 > 0 and the scale parameter 𝛽 > 0. Its probability density function (pdf) is given by 

Mohammadi et al. (2017) 
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The exponential pdf is given as follows Alavi et al. (2016b): 
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Let X be a random variable from the Extreme value distribution with the location parameter 𝜇 

and the scale parameter 𝜎. Its pdf of the distribution is given by Sarkar et al., (2011) 
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The gamma pdf is given as follows Morgan et al., (2011): 

𝑓(𝑥) =
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where Γ(. ) is the Gamma function, 𝑎 is a shape parameter, 𝑏 is a scale parameter. 

The pdf for the generalized Pareto distribution with shape parameter 𝑘 ≠ 0, scale parameter 

𝜎, and threshold parameter 𝜃, is 

𝑓(𝑥) =
1
𝜎	J1 + 𝑘

(𝑥 − 𝜃)
𝜎 P

;F;F\
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for 𝜃 < 𝑥, when 𝑘 > 0, or for 𝜃 < 𝑥 < 𝜃 − 𝜎/𝑘 when 𝑘 < 0. 

The pdf of the half-normal distribution is 
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where 𝜇 and 𝜎 are the location parameter and the scale parameter, respectively. 

The inverse Gaussian distribution (also known as Wald distribution) has the density function 

Bardsley (1980), 
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The pdf of the Logistic distribution (Scerri and Farrugia, 1996) is 
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The pdf of the lognormal distribution (Garcia et al., 1998) is  
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The Nakagami distribution has the density function (Alavi et al., 2016b) 
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with shape parameter 𝜇 and scale parameter 𝜔 > 0. 

The normal distribution pdf with first parameter the mean 𝜇, the second parameter the 

standard deviation 𝜎 is (Crutcher and Baer, 1962),  
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The Rayleigh pdf (Pishgar-Komleh et al., 2015) is  
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The pdf of the Rician distribution with noncentrality parameter 𝑠 ≥ 0 and scale parameter 

𝜎 > 0 is 
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The pdf of the t Location scale distrbiution with the location parameter (𝜇), the scale 

parameter (𝜎) and the shape parameter (𝑣) is  
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where Γ(. ) is the Gamma function.  

The pdf for the Weibull distribution with shape parameter 𝑏 and scale parameter 𝑎 is 
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The wind speed data is taken from Department of Astronomy and Space Sciences, İstanbul 

University, in this study. It contains wind speeds, recorded at 65 m elevation, obtained from 

Historical Beyazit Tower and Meteorology Station Observatory located at İstanbul in Turkey. 

The geographical information of the station is Latitude: 41°00'42" north, Longitude: 

28°57'55" east.  

Estimation Methods and Model Evaluation Criteria 

In this subsection, the maximum likelihood method estimates the unknown parameters of the 

distributions given in the previous section. Because it has good asymptotic statistical 

properties, the most preferred estimation method than other estimation methods, it is used in 

this study. 

The aim of using a maximum likelihood estimation (MLE) for fitting a distribution model to 

wind speed set or any data set is to estimate the parameters of the distribution that maximize 

the likelihood function (Eq. 17) of having the observed data. 

𝐿 =t𝑓(𝑥u)
v

uwF

= 𝑓(𝑥F). 𝑓(𝑥A)…𝑓(𝑥v) (17) 

The following criteria are used to determine the performances of the modeling of the 

distributions: Root mean square error (RMSE), used measure of the differences between the 

real wind speed values and values predicted by related distribution model, Coefficient of 

determination (R2), Maximum value of the likelihood function (lnL), Akaike information 

criterion (AIC), Schwarz criterion or Bayesian information criterion (BIC), which are  an 



estimator of the relative quality of statistical models for a given wind speed data, are used in 

this study. 

The formulas of the model selection criteria in this study are illustrated in Table 1. 

INSERT TABLE 1 HERE 

 

In Table 1, 𝑥(u) is the i-th order statistics, 𝐹z	is cumulative distribution function, 𝐹z{(𝑥u) =
F
v
∑ 𝐹z(𝑥u)v
uwF ,	n is the number of wind speed data size, lnL is the log-value of Eq(17) and K is 

the number of the estimated parameters. 

Analysis and Results 

The descriptive statistics of the data measured every 5 minutes are automatically refreshed 

thanks to the RTM tool developed without any processing by the user. The descriptive 

statistics of the data taken momentarily from Beyazıt Observatory are shown in Table 2. For 

example, the statistics for the first five minutes after the start of the RTM tool are given in the 

second column in Table 2. Re-descriptive statistics are calculated automatically as new data 

is available after every five minutes and are in the third column in Table 2. As shown in 

Table 2, it continues in this way. 

INSERT TABLE 2 HERE 

To better fitting, it is expected that the values of RMSE, AIC and BIC have the lower values, 

whereas R2 and lnL have the higher values. To put it more simply, the higher the R2 and lnL 

values and the lower the RMSE, AIC and BIC values, the modeling is the better. As the wind 

speed measurement is made every 5 minutes, the data of 288 wind speeds are obtained in one 

day. For modeling in this study. A total of 20.160 wind speed data obtained in 70 days was 

used. The results of modeling performed by the RTM tool are presented in Table 3. Table 3 

shows that the lowest RMSE, AIC and BIC values have the Weibull distribution within the 

distributions used in this study. Likewise, the highest value of R2 and lnL has the Weibull 

distribution.  

INSERT TABLE 3 HERE 

Figure 1 demonstrate the fitting performance of Weibull and Nakagami for data measured in 

this study, respectively. Weibull distribution seems a better fitting than other distributions in 



this study. Nakagami distribution provides best fit as the second good performance. The 

parameters of the Weibull distribution are shape parameter 𝑏 = 1.768, scale parameter 𝑎 =

7.3264, whereas the parameters of the Nakagami distribution are estimated as shape 

parameter 𝜇 = 0.83131 and scale parameter 𝜔 = 57.0454. The interface of the developed 

RTM tool is shown in Figure 2. 

INSERT FIGURE 1 HERE 

INSERT FIGURE 2 HERE 

 

Concluding Remarks 

The wind speed must be measured and modeled continuously as it changes continuously.  

Therefore, there is a need for a tool capable of continuous modeling for wind forecasters and 

other implementers. There are criteria such as root mean square error, coefficient of 

determination, maximum value of the likelihood function, Akaike information criterion and 

Bayesian information criterion are used to better fitting. This study proposes the RTM tool 

for automatically selects the best distribution from the most commonly used distributions of 

wind speed data. Obtained results from this study with the data from the real-time data 

transfer observer show that RTM tool works efficiently in the wind speed data fitting and the 

wind speed data can be modelled by the Nakagami distribution. In addition to the wind speed 

estimation problems, the RTM tool can be used for all parameter estimation problems in real  
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Figures and Tables 

Table 1: Model Selection Criteria 

Criteria Formulas 
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Table 2: Descriptive Statistics for Iterative Data  

Statistics The first 5 
minutes 

The second 5 
minutes 

The third 5 
minutes 

The fourth 5 
minutes 

Min 1.6 1.6 1.6 1.6 
Max 25.7 25.7 25.7 25.7 
Mean 11.765 11.7728 11.7835 11.7970 



Variance 39.8702 39.8321 39.8236 39.8533 
Skewness 1.8245 1.8252 1.8244 1.8244 
Kurtosis -0.0358 -0.0389 -0.0424 -0.0457 
n 555 556 557 558 

 

Table 3. Descriptive Statistics for Real Time Wind Speed Data 

Distributions RMSE R2 AIC BIC lnL 
Birnbaum Saunders 0.06184 0.95733 108401.8 108417.6 -54198.9 
Exponential 0.11099 0.73481 115808.9 115816.8 -57903.5 
Extreme Value 0.07367 0.91953 117549.3 117565.1 -58772.7 
Gamma 0.04755 0.97547 107819.4 107835.2 -53907.7 
Gen. Extreme Value 0.04988 0.97368 109182.8 109206.5 -54588.4 
Generalized Pareto 0.07619 0.89937 111361.1 111384.9 -55677.6 
Half Normal 0.07593 0.90895 110791.9 110807.7 -55393.9 
Inverse Gaussian 0.06604 0.95175 108917.9 108933.8 -54457 
Logistic 0.05205 0.96975 112318.9 112334.7 -56157.4 
Loglogistic 0.05323 0.96837 110222.5 110238.3 -55109.2 
Lognormal 0.05826 0.96252 109000 109015.8 -54498 
Nakagami 0.04405 0.97858 107737.9 107753.7 -53866.9 
Normal 0.05522 0.96566 111487.6 111503.5 -55741.8 
Rayleigh 0.05938 0.96487 108219.1 108227 -54108.5 
Rician 0.0594 0.96483 108221.1 108236.9 -54108.5 
T Location Scale 0.05522 0.96566 111489.6 111513.4 -55741.8 
Weibull 0.04402 0.97869 107700.1 107716 -53848.1 

 

 



 

Figure 1: Histogram of wind speed data and pdf graphs of the best distributions 

 

 

 

Figure 2: Interface of developed RTM tool 
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