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Abstract 
Diffusion reach probability between two nodes on a network is defined as the probability of a cascade originating from one 
node reaching to another node. An infinite number of cascades would enable calculation of true diffusion reach 
probabilities between any two nodes. However, there exists only a finite number of cascades and one usually has access 
only to a small portion of all available cascades. In this work, we addressed the problem of estimating diffusion reach 
probabilities given only a limited number of cascades and partial information about underlying network structure. Our 
proposed strategy employs node representation learning to generate and feed node embeddings into machine learning 
algorithms to create models that predict diffusion reach probabilities. We provide experimental analysis using synthetically 
generated cascades on two real-world social networks. Results show that proposed method is superior to using values 
calculated from available cascades when the portion of cascades is small.  
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Abstract 
Diffusion reach probability between two nodes on a network is defined as the probability  of a cascade 
originating from one node reaching to another node. An infinite number of cascades would enable 
calculation of true diffusion reach probabilities between any two nodes. However, there exists only a 
finite number of cascades and one usually has access only to a small portion of all available cascades.  
In this work, we  addressed the problem  of estimating diffusion reach probabilities given only a 
limited number of cascades and partial information about underlying network structure. Our proposed 
strategy employs node representation learning to generate and feed node embeddings into machine 
learning algorithms to create models that predict diffusion reach probabilities. We provide experi- 
mental analysis using synthetically generated cascades on two real-world social networks. Results 
show that proposed method is superior to using values calculated from available cascades when the 
portion of cascades is small. 

Keywords social networks; information diffusion; representation learning; influence maxi- 
mization. 
 

 
Bir ağ üzerinde yer alan iki düğüm arasındaki yayılım erişme olasılığı, bir düğümden başlayan 
çağlayanın diğer düğüme ulaşma olasılığı olarak tanımlanmıştır. Sonsuz sayıda çağlayan, 
herhangi iki düğüm arasındaki doğru yayılım erişme olasılığını hesaplamayı mümkün kılardı. 
Ancak, yalnızca bitimli sayıda çağlayan vardır ve genellikle varolan çağlayanların yalnızca 
küçük bir oranına denk gelen kısmı elde edilebilir. Bu çalışmada, kısıtlı sayıda çağlayan ve ağ 
yapısı hakkında kısmi bilgi verildiğinde, yayılım erişme olasılıklarını tahminleme problemini 
ele alıyoruz. Önerdiğimiz strateji, düğümler için temsil öğrenmeyi kullanır. Öğrenilen düğüm 
temsilleri yayılım erişme olasılıklarını tahmin etmek için yapay öğrenme algoritmalarında 
kullanılır. Gerçek hayattan alınan iki sosyal ağı ve bu ağların üzerinde yapay olarak üretilmiş 
çağlayanları kullanan deneysel analizler gerçekleştirilmiştir. 
Önerdiğimiz metodun, mevcut çağlayanların oranı az olduğunda, mevcut çağlayanlardan 
doğrudan değer hesaplama metoduna kıyasla daha iyi sonuçlar verdiği gösterilmiştir. 
 

Anahtar sözcükler: sosyal ağlar; bilgi yayılımı; temsil öğrenme; etki enbüyükleme. 
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Introduction 
Social networks play an increasingly important role in our daily lives, and in the world in 
general. Politics, business, and other matters of our lives are significantly shaped by social 
influence that we are exposed to via the social networks we are part of. The world has 
evolved to be a place where information can spread very quickly and easily through cas- 
cades. Information cascades in social networks can be modeled by stochastic models such 
as Markov random fields (Domingos & Richardson, 2001), Independent Cascade Model 
(ICM), Linear Threshold Model (LTM) (Kempe, Kleinberg, & Tardos, 2003), or deter- 
ministic models such as Deterministic LTM (Gursoy & Gunnec, 2018). In this work, we 
employ ICM which is one of the most commonly studied diffusion model in the literature. 
Independent Cascade Model (ICM) assumes that diffusion time steps are discrete.   At    
any time, a node can be either active (i.e., influenced) or inactive. An active node may 
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attempt to activate a neighboring inactive node only once, and a node cannot become 
inactive later once it is active (i.e., a progressive model). The process starts with some 
initially active nodes which serve as the seed nodes. A node v that is activated at time t 
tries to activate its inactive neighbor nodes at time t + 1. The attempt is successful with 
probability pvu. The process runs until the time step where no more nodes get activated. 

 
INSERT FIGURE 1 HERE 

 
Figure 1 illustrates the diffusion process in ICM. B is selected as the seed node and 
activated at t = 0. It then attempts to activate its neighbors. A, C, and E have activation 
probabilities of pBA, pBC , and pBE  respectively.  At  t = 1, only A is activated by  B; and   
B cannot activate any of its neighbors anymore.  A  then proceeds to activate D  in a  
similar fashion. After D attempts to activate its neighbors and activate tt, the diffusion 
terminates since there does not remain any active node which can attempt to activate 
neighbors. 
Diffusion reach probability between two nodes can be defined as the probability of the 
cascade originating from a node reaching to the other node, by traversing the nodes 
between them if  there are any.  An infinite  number of cascades would enable calculation  
of diffusion reach probabilities, however there exists only a finite number of cascades, and 
in general only a limited portion of them are accessible. Predicting such probabilities is, 
therefore, a nontrivial problem. 
Machine learning might be utilized in such prediction tasks. However, most machine 
learning algorithms require input data to be in a tabular form in which rows represent  
cases and columns represent feature space. The choice of the feature set has a significant 
effect on the performance of a machine learning model. Hence, a considerable amount of 
effort is actually spent on engineering better features. Representation learning is a way of 
automatically discovering important features which replaces the time consuming manual 
feature engineering. Representation learning in social networks is concerned about finding 
learning methods which can embed nodes to a latent space in a way that the resulting 
embeddings contain maximum information within a reasonable dimensionality. These 
learned latent features then can be used in machine learning tasks. 

 

Related Work 
Apart from the earlier matrix factorization methods, seminal algorithm of Perozzi, Al- 
Rfou, & Skiena (2014) named DeepWalk paved the way for most of the future studies. 
DeepWalk  is a random walk-based method, to learn latent representations of vertices in     
a network by  optimizing the probability of nodes occurring in the same random walk  
using gradient descent. Tang et al. (2015) proposed Large-scale Information Network 
Embedding (LINE) which considers first-order proximity (i.e., sharing a tie) in addition    
to second-order proximity (i.e., sharing the neighborhood). This way, LINE improved 
DeepWalk which only considers second-order proximity. Improving this line of work even 
further, Grover & Leskovec (2016) proposed node2vec which generates biased random 
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walks by trading-off between depth-first search and breadth-first search. Hence, node2vec 
is able to discover a more diverse neighborhood structure. 
There are number of other studies which considers context of links and nodes (Tu, Liu,  
Liu, & Sun,  2017),  node attributes (Huang,  Li,  & Hu,  2017);  or focuses on developing  
a meta-strategy (Chen, Perozzi, Hu,  & Skiena,  2017).  On the other hand,  Tu,  Zhang,  
Liu & Sun (2016) and Wang, Cui, & Zhu (2016) develop semi-supervised representation 
learning algorithms. 
Another line of work in representation learning is concerned specifically with its applica- 
tions related to information diffusion in social networks. Works of Bourigault, Lamprier, 
& Gallinari (2016) and Li, Ma, Guo, & Mei (2017) are among such studies which aims 
to predict diffusion probabilities or make use of existing information diffusion cascades in 
creating latent representations. 
Overall, the use of representation learning for information diffusion in social networks is a 
promising field. There is an ample space for development of more sophisticated algorithms, 
extending the existing problems to cover different problem settings, and applications of 
those methods in different fields including interdisciplinary works. 

 

Methodology 
The main objective of this study is to predict the probability of a new diffusion cascade,   
on a given a directed social network tt(V, E), originating from a node u  reaching to       
any other node v given partial information on underlying network structure, only the 
connections and directions but not the strengths, and limited number of cascades on the 
actual network. Here, the ith cascade, Ci, contains timestep-node pairs (t, Vt) where Vt 
contains nodes v ∈ Vt that are activated at time t. 

Dataset Generation 
Diffusion cascades are synthetically created under ICM using real-world graph datasets. 
Email-Eu-core (Leskovec, Kleinberg, & Faloutsos, 2007) is a directed network generated 
from internal email data of a large European research institution.  There is an edge (u, v)  
in the network if person u sent person v an email. Bitcoin Alpha (Kumar, Spezzano, 
Subrahmanian, & Faloutsos, 2016) is the who-trusts-whom directed network of people  
who trade using Bitcoin on a platform called Bitcoin Alpha. Number of nodes and links  
for each network is shown in Table 1. 

 
INSERT TABLE 1 HERE 

 
Diffusion cascades are created in the following way. We assign activation probabilities  
puv, the probability that node u  activates node  v, randomly between 0 and a selected  
value maxp. Then, for each node v ∈ V , number r of cascades are initiated by activating 
v. The diffusion takes place according to the ICM. In this way, total of |V |r cascades are 
generated for each dataset. 
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Note that, the activation probabilities which are assigned for generating diffusion cascades 
are assumed to be unknown in the rest of the study. As far as the rest  of the study  
concerns, the cascades are treated to be generated by some unknown processes or taken 
from real-world cascades. 

 
Proposed Method 
Our proposed method aims to predict diffusion probabilities between any two nodes re- 
gardless of whether they are neighbors or not. Thus, to measure accuracy, we need actual 
and predicted values.   The actual diffusion probability between u  and v  is assigned as     
P (v|V∗,0 = {u}) that is the probability of v occurring in a cascade started from u. The 
algorithm for calculating actual reach probabilities is given in Algorithm 1.  Note that, as   
r approaches to infinity, our actual values approach to their true values. Therefore, it is 
important to make the distinction between true values, actual values, label values, and 
predicted values. Actual values are indeed estimations of true values. Since we  assume  
that we can not precisely know the true activation values,  computing the actual values 
from all generated cascades allows us to obtain some accuracy scores by comparing them 
with the predicted values. Label values, on the other hand, are calculated using only a 
portion of all cascades and used in training of the model.  Label values are calculated in  
the same way as actual values. 

 
Algorithm 1 Actual Diffusion Probability Calculation 

 

Input: C: a cascade list where C[i][j][k] is the kth node activated at time j for the 
cascade i, x: number of cascades, y: number of timesteps a particular cascade 
diffuses for, z: number of nodes a cascade contains at a particular timestep, r: 
number of cascades for each node 

1:  M a zero matrix to count how many times each node appeared in all cascades 
for given seed nodes 

2: for i = 1 to x do 
3: for j = 1 to y do 
4: for k = 1 to z do 
5: M [C[i][1][1]], [C[i][j][k]]+ = 1 
6: end for 
7: end for 
8: end for 
9:  for   i = 1 to  V do 

10: for   j = 1 to  V  do 
11:  A[i, j] = M [i, j]/r 
12: end for 
13: end for 
Output: A, where A[i, j] is the actual diffusion probability from node i to node j 
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The node embeddings are generated by node2vec algorithm. Given a node embedding 
ev for node v and node embedding eu for node u, link embedding evu is created by 
concatenating ev and eu. Note that, link embeddings are created for every node pair 
regardless of whether they are neighbors in the network or not. 
Machine learning models from Python’s scikit-learn library are then used to train the 
models. Link embeddings are used as features and corresponding label probabilities are 
used as target values. There are as much as |V |(|V | − 1) link embeddings since there is 
an embedding for each node pair. 
The source code and datasets employed in this study are available at furkangursoy.github.io 

 

Experimental Results 
For each graph, two cascade sets are generated: one with random activation probabilities 
between 0 and 0.05, and the other one with probabilities between 0 and 0.1.  Therefore,   
we obtain a total of 4 different cascade sets. Each cascade set contains |V |r different 
cascades where r = 20 for the purposes of our experimental analysis. 
For  each cascade set,  label values  are calculated based on portions of all cascades in      
the given cascade set. 10%, 20%, 40%, and 60% of all cascades are considered. The 
cascades are selected randomly from all cascades, resulting in different number of cascades 
for different seed nodes. This effectively results in 4 different sets of label values (e.g., 
diffusion probabilities) for each cascade set. The intuition behind this is that; one has 
access only to a portion of all information cascades in real life. In total, we obtain 16 
datasets to train our machine learning models. 
Parameters of node2vec are set as follows: directed network, 128 dimensions (i.e., number 
of latent features), walk length of 20, and window size of 5. 
Performance results are measured by Mean Absolute Error (MAE) and presented in Table 
2. In the table, BM is an abbreviation for Benchmark and its value is calculated by 
comparing label values with actual probabilities. GrdBst is an abbreviation for Gradient 
Boosting,  MLP is an abbreviation for Multilayer Perceptron.  Performances of GrdBst   
and MLP is calculated by comparing predicted values with actual probabilities. Since it 
takes excessively long time for GrdBst to train, GrdBst experiments are not performed    
for Bitcoin Alpha. 

 
INSERT TABLE 2 HERE 

 
If the portion rate was 100%, Benchmark error would be zero by definition. Accord- 

ingly, as the ratio of available cascades increases, performance of Benchmark gets better. 
However, when the available portion of cascades is smaller, machine learning algorithms 
perform better than the benchmark; which confirms our hypothesis that information ex- 
tracted from the underlying network structure helps in predicting the diffusion reach 
probabilities in case of having only a portion of all cascades. 
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In experiments for Email-Eu-core dataset, when 10% of cascades are available, error 
rate of GrdBst is 38% to 40% lower  than error rate of BM whereas error rate of MLP        
is 22% to 32% lower. When available cascade portion is 20%, error rates of GrdBst and 
MLP are 19% to 24% and 14% to 23% lower than error rate of BM, respectively. Similar 
results hold for experiments on Bitcoin Alpha network when activation probabilities are  
set between 0 and 0.1. In both networks, when available portion of cascades increases 
beyond 40%, Benchmark begins to outperform our strategy. The experiments on Bitcoin 
Alpha with activation probabilities between 0 and 0.1 seem to be an exception among all 
experimental results. Therefore, as desired, our strategy works well for the cases where 
number of cascades is limited. 

When performances of GrdBst and MLP methods are compared in Email-Eu-core 
experiments, it can be seen that MLP has a more varying performance compared  to GrdBst 
when available cascade portions change. Thus, the performance of GrdBst is less dependent 
on the portion of cascades whereas performance of MLP is influenced more by it. MLP 
outperforms GrdBst when there is a larger number of cascades, however; in the cases 
where MLP performs better than GrdBst, BM outperforms both. 

Experiments are performed on a computer with Intel Xeon CPU @ 2.40 GHz, and 
64 GB memory. The average runtimes for training the learning models is given in Table 
3. In addition to differences between the two  algorithms,  runtime of MLP is shorter  
since it works in parallel whereas GrdBst works on a single core.   On the other hand,      
the large runtime differences between the two graphs are due to the size of the training 
data.  Number of rows in the training data is proportional to the square of number of  
nodes. Accordingly, training data from Bitcoin Alpha has approximately 14 times more 
rows compared to that of Email-Eu-core. 

 
INSERT TABLE 3  HERE 

 

Conclusion 
In this work, we proposed a strategy which utilizes representation learning for predicting 
diffusion reach probabilities between nodes using the available cascade information on 
the network. Our work is novel in a sense that it aims to predict diffusion probabilities 
between any nodes regardless of whether they are neighbors or not, in comparison to 
previous literature where probabilities between neighboring nodes are of concern. Also, 
utilization of representation learning in diffusion probability prediction is, to the best of 
our knowledge, a novel strategy. 
Experimental analyses showed  that MAE of our method is up to 40% lower than that       
of the benchmark when available portion of cascades is 10%, and up to 24% lower when 
portion of cascades is 20%.  Hence, our novel  strategy stands out as a promising method  
in predicting diffusion reach probabilities when only partial information about cascades 
and underlying network structure is available. 
Once the diffusion probabilities between all nodes are predicted, one can utilize this infor- 
mation to estimate diffusion cascades and design viral marketing campaigns accordingly. 
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For instance, in deciding which seed set to hire among the candidate seed sets for an 
influencer marketing campaign in an online social network,  the marketers can compare  
the estimated future cascades originated from these different seed sets.   This can also      
be used in targeted campaigns where the final cascades are compared based on desired 
characteristics the nodes in those cascades have. 
Furthering the current work, we plan to improve on two aspects of this methodology. First, 
generation of link embeddings can be improved in a way that the latent representation 
contain more and better suiting information for the problem of diffusion reach probability 
prediction. Second, created models can be improved by experimenting with variety of 
machine learning algorithms as well as by  designing a better training data (e.g., in terms  
of imbalance). Moreover, scalable methods should be developed to accommodate larger 
networks. 

 

Acknowledgement 
This research was partially supported by Bogazici University Research Fund (BAP), 
Project Number: 15N03SUP2. 



9  

 
References 
Bourigault, S., Lamprier, S., & Gallinari, P. (2016). Representation learning for infor- 
mation diffusion through social networks. Proceedings of the Ninth ACM International 
Conference on Web Search and Data Mining - WSDM 16. 
Chen, H., Perozzi, B., Hu, Y., & Skiena, S. (2017). HARP: hierarchical representation 
learning for networks. arXiv preprint arXiv:1706.07845. 
Domingos, P., & Richardson, M. (2001). Mining the network value of customers. Pro- 
ceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining - KDD 01. 
Grover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for networks. 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining - KDD 16. 
Gursoy, F., & Gunnec, D. (2018). Influence maximization in social networks under deter- 
ministic linear threshold model. Knowledge-Based Systems. 
Huang, X., Li, J., & Hu, X. (2017). Accelerated attributed network embedding. Proceed- 
ings of the 2017 SIAM International Conference on Data Mining, 633-641. 
Kempe, D., Kleinberg, J., & Tardos, . (2003). Maximizing the spread of influence through  
a social network. Proceedings of the Ninth ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining - KDD 03. 
Kumar, S., Spezzano, F., Subrahmanian, V. S., & Faloutsos, C. (2016). Edge weight 
prediction in weighted signed networks. 2016 IEEE 16th International Conference on 
Data Mining (ICDM). 
Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007). Graph evolution: Densification and 
shrinking diameters. ACM Transactions on Knowledge Discovery from Data, 1(1). 
Li, C., Ma, J., Guo, X., & Mei, Q. (2017). DeepCas: an end-to-end predictor of infor- 
mation cascades. Proceedings of the 26th International Conference on World Wide Web 
- WWW 17. 
Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social repre- 
sentation. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining - KDD 14. 
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale 
information network embedding. Proceedings of the 24th International Conference on 
World Wide Web - WWW 15. 
Tu, C., Liu, H., Liu,  Z.,  & Sun,  M. (2017).  CANE: Context-aware network embedding 
for relation modeling. Proceedings of the 55th Annual Meeting of the Association for 
Computational Linguistics (Volume 1: Long Papers). 
Tu, C., Zhang, W., Liu, Z., & Sun, M. (2016, July). Max-Margin DeepWalk: Discrimi- 
native learning of network representation. In IJCAI (pp. 3889-3895). 
Wang, D., Cui, P., & Zhu, W. (2016, August). Structural deep network embedding. In 
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery 
and data mining (pp. 1225-1234). ACM. 



10  

 
Figures and Tables 

 
 

 

Figure 1: Independent Cascade Model 
 
 

Table 1: Graphs used in the study 
 

 # of nodes # of links 
Email-Eu-core 1005 25,571 
Bitcoin Alpha 3783 24,186 

 
 

Table 2: Performance Results (MAE scores) 
 

 Email-Eu-core Bitcoin Alpha 
Activation Prob. Cascade Portion BM GrdBst MLP BM MLP 
 

(0, 0.05) 

10% 0.0874 0.0538 0.0592 0.0013 0.0017 
20% 0.0667 0.0508 0.0514 0.0012 0.0015 
40% 0.0419 0.0498 0.0478 0.0009 0.0012 
60% 0.0272 0.0492 0.0460 0.0006 0.0014 

 

(0, 0.1) 

10% 0.1860 0.1118 0.1445 0.0210 0.0176 
20% 0.1219 0.0992 0.1055 0.0177 0.0164 
40% 0.0707 0.0959 0.0850 0.0118 0.0163 
60% 0.0459 0.0952 0.0867 0.0076 0.0175 
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Table  3:  Runtime Results 
 

Email-Eu-core Bitcoin Alpha 
GrdBst MLP GrdBst MLP 
≈ 2 hours ≈ 10 minutes > 1 day ≈ 2.5 hours 
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