
5th International Management Information Systems Conference October 24-26 2018, Ankara

Comparing Bug Finding Tools for Java Open Source Software
Elmira Hassani Oskouei1*, Oya Kalıpsız1

1 Yildiz Technical University, * Corresponding author, elmira.ha2006@gmail.com

Introduction
The importance of software test and quality has caused to

developing many bug finder tools. Software’s are getting bigger
and more complex and it is very important to improve defect-
detection techniques. Software failure may have very critical
consequences like economic loss. Many researches have been done
to help find bugs automatically (Malhotra, & Bahl, 2017) and
easier by using static analysis bug finding tools. The deployment of
an integrated environment for software testing tools is also
important to increase businesses productivity in software
development. The integrated environment is proposed to assist
software-testing executions within projects on enterprises
(Romano, De Souza, & Dacünha, 2015).

We address the question how bug finding tools can help to
detect problems and if there is one tool that can use instead of all
the tools to find the bugs. In addition, what type of defects can
each tool detect and is there any common bug type that is found
by all the tools.

After evaluating the results the below finding are listed.
• Each tool can find different type of defects and there are

very few bugs that were found by all the three tools.
• There is no one tool that can be used instead of all the tools

since each tool found different bugs.
In this study, three open source tools that are PMD, FindBugs

and checkstyle are used after evaluating the available open source
tools for Java programs. We ran these tools on four open source
projects written in Java programs (Malhotra, 2015). All the defects
that were found were classified into five different categories.

Method
To detect bugs in source code by static analysis bug finding

tools are used (Manzoor, Munir, & Moayyed, 2012). These tools
can sometimes help to detect very critical problems that can cause
to failure of the software and they can reduce time and cost while
developing the software.

In this section, the three tools that are used in the case study
are described. These tools can analyze Java programs. All the open
source programs that are used in this study are written with Java
language and all three tools are published under an open source
license. The basic properties of the tools are written in table 1.

Table 1. Basic properties of the tool.

PMD
This is an open source code analyzer that can examine the Java

source code (https://www.pmd.github.io). It uses a rule-based
approach to analyze the source code and to indicate the possible
bugs and mistakes like empty catch blocks, unused variables, copy
and paste line of codes and etc. It is a static code analysis tool that
indicates bugs without executing the code. PMD has many built-
in rules to check the source code but it also allows writing rules so
it can be used to check problems for specific environments.
Additionally, it also allows users to execute custom analyses by

Abstract
Software’s are getting bigger and more complex and it is very important to improve defect-detection techniques. Software
failure may have very critical consequences like economic loss. Using bug finding tools can reduce time and cost of testing
software’s. The importance of software testing process has caused developing of many tools to find bugs automatically in
program source code in recent years. In this paper, we perform a comparison between different Java open source bug-
finding tools over a wide variety of tasks. For our study, we used three well-known open source bug-finding tools which are
PMD, FindBugs and Checkstyle. We ran these tools on a variety of open source Java programs and compare the results.
Our results show that each of the tools can find different kind of bugs and there is no perfect tool that can be used instead of
the other tools.

Keywords: PMD, Checkstyle, FindBugs, Java, Software testing tools.

Citation: Oskouei, E. H., Kalıpsız, O. (2018, October) Comparing Bug Finding Tools for Java Open Source Software.
IMISC 2018 Conference Proceedings, 17-19.
Editor: H. Kemal İlter, Ankara Yıldırım Beyazıt University, Turkey
Received: August 19, 2018, Accepted: October 18, 2018, Published: November 10, 2018
Copyright: © 2018 IMISC Yıldırım, Bayraktaroğlu. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

IMISC 2018 Conference Proceedings 17

5th International Management Information Systems Conference October 24-26 2018, Ankara

allowing them to develop new evaluative rules in a convenient
manner. One of the reasons that make PMD quite popular is that
it can be integrated with famous development environments such
as Eclipse and it is also user-friendly. This tool is generally very
effective and functional for both small and large set of codes.

FindBugs
This tool detects bugs by using a list of bug patterns (http://

www.findbugs.sourceforge.net). FindBugs uses data flow and
syntactic analysis to detect bugs. Static analysis of the byte code is
how this tool can find bugs. It allows everyone to add new bug
patterns so it is expandable. Like PMD, this tool can also be
integrated with famous development environments such as eclipse.

Checkstyle
This tool checks the Java code according to a code standard

like sun code conventions (http://www.checkstyle.sourceforge.net).
The best thing about this tool is, it can be adjustable according to
any coding standard. Its operation is based on validation rules. The
latest versions of this code are able to identify class design
problems, duplicated code, or bug patterns.

We want to give a quick overview of the four projects. The
projects chosen are development projects from the
telecommunications company Sahand Iran with various
development efforts and sizes. All these projects were developed
using the Java programming language and can be classified as web
information systems as they all use HTML and web browsers as
their user interface.

Case Study
We ran all the three tools on the projects with special care aim

to get appropriate results as much as possible. We check each
warning one by one in order to make sure if it is a real defect or
not. To do this, each part of the code related to the warning was
checked by experienced developer. We used four projects in this
case study but for further details and more accurate results more
projects and tests are necessary. Also, three tools were used for this
study which can be expandable to more tools. For defect
categorization, we used the standard categories (Wagner, Jurjens,
Koller, & Trischberger, 2005) which are described in from 1 to 5.
The defects in category 1 are the most critical and in category 5
the least critical. The categories are:

1. Defects that lead to a crash of the application.
2. Defects that cause a logical failure.
3. Defects with insufficient error handling.
4. Defects that violate the principles of structured

programming
5. Defects that reduce the maintainability of the code.

Findings
In this section, we present all the results from the case study.

Table 2 shows all the defect types and their categories found by
the tools over the projects.

As shown on table 2, most of the warnings belong to category
5 (maintainability of the code). It is very clear that each tool finds
different type of bugs and very few defects were detected by all the
three tools. Checkstyle could not detect the defects that belong to
the first category. PMD and Findbugs detect problems from all
the categories.

Table 2. Defects found by the tools.

The number of the bugs found by each tool is graphically
shown on Fig. 1. Findbugs detect total of 15 types of bugs and
PMD total of 19 types of bugs and Checkstyle total of 4 types of
bugs.

Figure 1. A graphical comparison of the number of defects found by each

tool and in total.

Bug-finding Tools in Contrast with Review
On one of the projects an informal review was done by the

developers of the project. The reviewers inspected the code in a
review meeting. All of the defects disclosed by the review are listed
in the table 3.

All the bugs found by the tools, were detected by the review
too. In addition, there are some defects found which were not
detected by the tools. However, PMD found 45 needless
semicolons which were not found by the review. On the other
hand, the review detected 5 defects of type “Length may be less
than zero” whereas the tools only found 2. In addition, Findbugs
found one “Unreachable code due to constant guard” but it was
not recognized in the review.

Most of the logical defects or wrong results were not found by
the tools. These types of faults are only found in the review by
following the test cases and codes.

In summary, tools are not as successful as the review because
the review is able to find logical and much more defects. Also, the
type of the defects found by the review is much more than the
tools. However, it is beneficial to use the tools at the begging to
remove the defects that are in common because this process is
much cheaper and faster.

IMISC 2018 Conference Proceedings 18

5th International Management Information Systems Conference October 24-26 2018, Ankara

Nevertheless, we notice a few number of false positive from
the three tools and this results in a lot of work for the developers.
This means, most of the tools need improvements to reduce these
false positives as much as possible.

Table 3. Defects found by the review.

Discussion and Conclusions
The work presented is a case study using some open source

projects and bug finding tools to evaluate their performance and
results in comparison to each other and also a review which was
done on the same projects. The bug finding tools mostly are not
able to verify the logic of the software therefore most of the
defects found are related to category 5 that is related to
maintainability of the code. These tools look for certain patterns
and simple dataflow. On the other hand, there are defects that can
only be revealed by review or test which are logical.

In summary, after evaluating the results, we can notice that
there is no one perfect tool that can we use instead of all the other
ones. Each tool can find different type of defects which are not in
common. In addition, using tools is not efficient enough because
there are many logical faults that are only found in review. This
shows that both can be used together.

The main conclusion is that developers need to improve the
bug finding tools and also try to reduce the false positive ratio so
in this case; these tools can save costs and time while used together
with other test techniques.

References
B. L. Romano, R. B. De Souza and A. M. Da cünha. (2015). Deploying integrated

environment for software testing tools. 12th International Conference on
Information Technology New Generations.

Numan Manzoor, Hussan Munir, and Misagh Moayyed. (2012). Comparison of static
analysis tools for finding concurrency bugs. IEEE 23rd International
Symposium on Software Reliability Engineering Workshops.

R. Malhotra and L. Bahl. (2017). A defect tracking tool for open source software. 2nd
International Conference for Convergence in Technology (I2CT).

R. Malhotra, Empirical Research in Software Engineering, USA: CRC Press. (2015).
Stefan Wagner, Jan Jurjens, Claudia Koller, and Peter Trischberger. (2005).

Comparing bug finding tools with reviews and tests. Unpublished. 

IMISC 2018 Conference Proceedings 19

